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Abstract

In this paper we try to look at the compactification of Teichmüller
spaces from a tropical viewpoint. Another paper working in this direc-
tion is [FG]. Here we propose a completely different approach. We use
amoebas and Maslov dequantization to construct and study the bound-
ary of Teichmüller spaces, that can be seen as connected components
of a real algebraic variety.

We describe a general construction for the compactification of al-
gebraic varieties, starting from their amoebas. This compactification
is similar to the one described by Morgan e Shalen in [MS1], the dif-
ference is that they looked only to “point at infinity” to add, while
we remove the points with some null coordinates and we replace them
with some new points (see below for a definition). The boundary that
we construct will be a closed subset of the sphere, such that the cone
over this subset is a tropical variety.

When we apply this construction to the Teichmüller spaces we see
that they can be mapped in a real algebraic hypersurface in such a
way that the cone over the boundary is a subpolyhedron of a tropical
hypersurface.

We want to show how some properties of the boundary becomes
straightforward if looked at from this point of view. For example there
is a piecewise linear structure that appear naturally on the boundary,
simply because the tropical varieties are polyhedrons. This structure
is then shown to be equivalent to the one defined by Thurston in the
80’s.

Also we may see easily that every polynomial relation among trace
functions on Teichmüller space may be turned automatically in a trop-
ical relation among intersection forms over the boundary. This fact
was already known (see [Lu1] and [Lu2]), but in this context it gain a
theoretical justification.
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1 Amoebas

In this section we recall the definition of the amoeba of an algebraic variety
embedded in Kn, and we state the fundamental facts about these objects
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that we will use in the following. Then we extend this definition to the case
of an abstract variety.

To define abstract varieties we fix a field K and a countable subfield
k ⊂ K. Let V ⊂ Kn andW ⊂ Km be algebraic subvarieties defined over k. A
polynomial map (with coefficients in k) f : V→W is said to be a polynomial
isomorphism if it is bijective an if its inverse is again a polynomial map. By
a K-abstract affine variety defined over k we mean an equivalence class
of such varieties up to polynomial isomorphisms.

This definition coincides with the usual one only if K is algebraically
closed. Else this definition is more restrictive as we want a morphism to be
polynomial. In this way every K-abstract affine variety V defined over k has
a well defined ring of coordinates k[V ].

The hypothesis of k being countable is not restrictive, as every variety
V ⊂ Kn admits such a definition field. This hypothesis is useful in the sequel
to make the ring of coordinate k[V ] countable.

1.1 The tropical semifield and Maslov dequantization

We define the tropical semifield as the semifield Rtrop = (R,⊕,⊙), where
a⊙ b = a+ b, a⊕ b = max(a, b). It is called semifield as the ⊙ operation is
invertible (0 being the neutral element), while the ⊕ operation is not.

The Maslov dequantization is a continuous deformation of the semifield
R>0 to the semifield Rtrop. Formally it is obtained in the following way.

Let h > 0, and let fh = exp( 1
h
). The semifield operations on R>0 induces,

through the bijection Dh : R>0 ∋ x→֒ logfh
(x) ∈ R, two operations on R:

⊕h and ⊙h. Explicitly a⊕h b = Dh(D−1
h (a)+D−1

h (b)) = logfh
(fa

h +f b
h), and

a⊙h b = Dh(D−1
h (a) ·D−1

h (b)) = a + b. We will denote by Sh the semifield
(R,⊕h,⊙h), isomorphic to R>0.

If h is small, the semifield Sh is “very similar” to the tropical semifield
Rtrop, in the following sense. Let a, b ∈ R. Then a ⊙h b = a ⊙ b. Suppose
a ≤ b so that b = max(a, b). Now b ≤ logf (fa+f b) ≤ logf (2f b) = logf (2)+b.
Then

a⊕ b ≤ a⊕h b ≤ a⊕ b+ h log(2)

We will write S0 = Rtrop, when needed.
One may try to use the maps Dh to study real algebraic varieties. Let

Z ⊂ Rn be an algebraic variety. For the moment we look only at positive
points, the set Z+ = Z ∩ (R>0)

n
. We denote by Dn

h the map Dh applied to
each factor of (R>0)

n
, Dn

h : (R>0)
n
→֒Rn, and we denote by Zh the image

Dn
h(Z+) ⊂ Rn.

Let I ⊂ R[X1 . . . Xn] be the ideal defining Z. An element f ∈ I may be
written in the form:

f =
∑

ω∈Zn

aωX
ω
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Where Xω =
∏n

j=1X
ωj

j , and the set Af = {ω ∈ Zn | aω 6= 0} is finite.
We want to separate the positive monomial of f from the negative ones,

so we define A+
f = {ω ∈ Af | aω > 0}, and A−

f = {ω ∈ Af | aω < 0}. Now
we split f in its positive and negative part:

f+ =
∑

ω∈A+

f

aωX
ω ; f− =

∑

ω∈A−

f

(−aω)Xω

So f = f+ − f−. Then the set Z+ may be written as:

Z+ = {x ∈ (R>0)
n
| ∀f ∈ I : f+(x) = f−(x)}

So we have a set of equations, one for each polynomial in I, with positive
coefficients.

We are interested in the set Zh, the image of Z+ under the map Dn
h .

For every polynomial f ∈ I we take the transformation of its positive and
negative parts through Dh.

f+
h = Dh ◦ f+ ◦ (Dn

h)−1 =
⊕

h

ω∈A+

f

Dh(aω) ⊙X⊙ω

f−h = Dh ◦ f− ◦ (Dn
h)−1 =

⊕

h

ω∈A−

f

Dh(−aω) ⊙X⊙ω

As Dh is a semifields isomorphism we have that

Zh = {x ∈ Rn | ∀f ∈ I : f+
h (x) = f−h (x)} (1)

Then one may try to use Maslov dequantization to study the sets Vh.

1.2 Absolute values

A similar technique also works for varieties over other fields. If K is a field
we need a way for sending its multiplicative group in R>0, then we may
apply the maps Dh. The right way is an absolute value function, i.e. a
function

| · | : K→R≥0

satisfying: 1) |x| = 0 ⇔ x = 0; 2) |xy| = |x||y|; 3) |x+ y| ≤ |x| + |y|.
Let K be a field endowed with an absolute value | · |. We may define the

map Log:
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Log : (K∗)n ∋







z1
...
zn






→







log |z1|
...

log |zn|






∈ Rn

This map is the composition of Dn
1 with the componentwise absolute

value.
Two absolute values | · |1, | · |2 are said to be equivalent if there exists

a λ ∈ R>0 such that | · |1 = | · |λ2 . Replacing | · | with an equivalent absolute
value the Log map change by a scalar factor, i.e. as if we had used a map
Dn

h instead of Dn
1 .

Let V ⊂ Kn an affine algebraic variety. We define the ameba of V as
the set

A(V ) = Log(V ∩ (K∗)n)

Let I ⊂ K[X1 . . . Xn] be the ideal defining V . Again we choose an
element f =

∑

aωX
ω ∈ I. Every element x ∈ V ∩ (K∗)n verifies:

∑

ω∈Af

aωx
ω = 0

Using triangular inequality, this implies that

∀w ∈ Af : |aω||x|
ω ≤

∑

ω∈Af\{w}

|aω||x|
ω

where the symbol |x| ∈ R>0 is a vector whose component are the absolute
values of the components of x.

Hence every point y ∈ A(V ) ⊂ Rn satisfy:

∀w ∈ Af : D1(|aw|) ⊙1 y
⊙1w ≤

⊕

1
ω∈Af\{w}

D1(|aω|) ⊙1 y
⊙1ω (2)

One may ask which are the fields with an absolute value. First note that
every field has the trivial absolute value, i.e. an absolute value such that
∀x 6= 0 : |x| = 1. Excluding this case, the absolute values may be divided in
archimedean ones and non archimedean ones.

An absolute value is said to be archimedean if ∀x, y ∈ K : ∃n ∈ N :
|nx| > |y|. The best example is when K ⊂ C and | · | is the Euclidean norm.
Actually every field with an archimedean absolute value may be embedded
in C in such a way that the norm is equivalent to the restriction of the
Euclidean norm.

The amoebas of varieties over archimedean fields are called
archimedean amoebas.

5



An absolute value | · | is non-archimedean if and only if it satisfies the
ultrametric inequality:

∀x, y ∈ K : |x+ y| ≤ max(|x|, |y|)

Equivalently | · | is non archimedean if and only if the function

v : K∗ ∈ x→− log(|x|) ∈ R

is a valuation.
On the other end, we may take any rank 1 valuation on K:

v : K∗→Λ

We have an immersion µ : Λ→֒R well defined up to scalar multiplication.
The map

| · | : K∗ ∋ z→e−µ(v(z)) ∈ R+

extended with |0| = 0, is a non archimedean absolute value on K, well
defined up to equivalence.

When | · | is induced by a rank 1 valuation, v : K∗→R, we can write the
Log map as:

Log : (K∗)n ∋







z1
...
zn






→







−v(z1)
...

−v(zn)






∈ Rn

And the amoeba becomes

A(V ) =

















−v(z1)
...

−v(zn)






|







z1
...
zn






∈ V ∩ (K∗)n











An amoeba of this kind is said to be a non-archimedean amoeba.
As the ultrametric inequality is much stronger than the triangular one,

the relation 2 becomes:

∀w ∈ Af : (−v(aw)) ⊙1 y
⊙1w ≤ max

ω∈Af\{w}
(−v(aω)) ⊙1 y

⊙1ω (3)

1.3 Tropical varieties

By a tropical polynomial in n variables we mean an expression of the form

P (X) =
⊕

ω∈AP

aω ⊙X⊙ω

Here AP ⊂ Z⊕J is a finite set, aω ∈ R and X⊙ω =
⊙n

j=1X
⊙ωj

j . Such a
polynomial defines a function:
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P : Rn ∋ x→P (x) = max
ω∈AP

(aω+ < x,ω >) ∈ R

This is a convex piecewise linear function.
Tropical polynomials may be used to define tropical hypersurfaces. We

see two different way for doing this.
If P and Q are tropical polynomials with AP ∩ AQ = ∅, we define the

real tropical hypersurface defined by P and Q as

TR(P,Q) = {x ∈ Rn | P (x) = Q(x)} (4)

This definition is motivated by the relation 1. Note that the hypothesis
AP ∩ AQ = ∅ is perfectly natural in this context, as we think P and Q to
be the positive and negative part of one polynomial, and it is necessary to
guarantee that the set TR(P,Q) has empty interior.

An hypersurface TR(P,Q) is a union of (possibly noncompact) polyhe-
drons, and in many cases it is a topological manifold.

This kind of varieties was used in [Vi] to give a tropical account of
the patchworking theorem, and will be used in section 3.1 to describe the
boundary we construct for a real algebraic variety.

The most common way for defining hypersurfaces is inspired by relation
2. If P is a tropical polynomial, we denote by T (P ) the (complex) trop-
ical hypersurface associated with P , defined to be the set points in Rn

satisfying the following relation:

∀w ∈ AP : aw ⊙X⊙w ≤
⊕

ω∈AP \{w}

aω ⊙X⊙ω (5)

This may be expressed more concisely as the set points in Rn in which
at least two of the monomials of P achieve maximum, or equivalently as the
set of points in Rn in which the function P is not locally linear. Tropical
hypersurfaces are closely related with non-archimedean amoebas for hyper-
surfaces:

Theorem 1.1. Let K be a algebraically closed field endowed with a val-
uation v : K→R ∪ {∞}, let f =

∑

ω∈Af
aωX

ω ∈ K[X1 . . . Xn], and let

V ⊂ Kn the zero locus of f . Then the closure of the amoeba A(V ) co-
incides with the tropical hypersurface defined by the tropical polynomial
f τ =

⊕

ω∈A(−v(aω)) ⊙X⊙ω.
Proof : See [EKL, thm. 2.1.1]. Actually we have already proved that

A(V ) ⊂ T (P ), as it follows easily from relation 3, if one remember that ⊙1 =
⊙, and max = ⊕. The reversed inequality follows from [EKL, lemma 2.1.5].
2

This result may be used as a guide in the definition of (complex) trop-
ical variety of lower dimension. We choose a field K with a valuation v,
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we take an ideal I ⊂ K[X1 . . . Xn], and we define the tropical variety of the
ideal I as:

T (I) =
⋂

f∈I

T (f τ ) (6)

Were f τ is the tropical polynomial defined in theorem 1.1. With this
definition we have that every tropical variety is an intersection of tropi-
cal hypersurfaces, but is not true that an arbitrary intersection of tropical
hypersurfaces is a tropical variety.

Theorem 1.2. Let K be an algebraically closed field endowed with a valu-
ation. Let I ⊂ K[X1 . . . Xn] be an ideal, and let V ⊂ Kn be its zero locus.
Then the closure of the amoeba of V is equal to T (I).

Proof : See [SS, thm. 2.1]. 2

Finally there is a third description for tropical varieties, using ring val-
uations.

Definition 1.3. Let k be a field, A ⊃ k a k-algebra. By a real valued
valuation of A over k we mean a map v : A→R ∪ {+∞} such that:

1. v(xy) = v(x) + v(y).

2. v(x+ y) ≥ min(v(x), v(y)).

3. v(0) = ∞, v(k∗) = 0.

A valuation is said to be trivial if v(A) ⊂ {0,+∞}.

Let K be an algebraically closed non-archimedean field, with valuation
v, and X ⊂ Kn be an irreducible variety. Let A = K[X ∩ (K∗)n] and SR

be the set of real valuation of A extending v. The Bieri-Groves set of X is
defined as the image of SR by the map

z : SR ∋ w→(−w(X1) · · · − w(Xn)) ∈ Rn

Theorem 1.4. z(SR) = A(X).
Proof : See [EKL, thm. 2.1.1] 2

There is a property of valuations that we will need in the following. The
set v−1(+∞) is a prime ideal of A. Hence all invertible elements are real
valued. If I ⊂ A is an ideal and v is a valuation of the quotient A/I, then v
may be lifted to a valuation w of A, by composition with the quotient map.
Then w(I) = {+∞}. The reciprocal is also true:

8



Lemma 1.5. Let w be a valuation of a ring A. Suppose I is an ideal such
that w(I) = {+∞}. Then there exists a valuation v of A/I such that w is
equal to the composition of v with the quotient map.

Proof : We only need to say that if f, g ∈ A and h = f − g ∈ I, then
w(f) = w(g). If both have infinite valuation this is obvious, else we suppose
that f has finite valuation and we know that f + h = g. As w(f) < w(h)
we have that w(g) = w(f). So we may define a valuation v of A/I, taking
the valuation of a counterimage. 2

1.4 Amoebas for abstract varieties

Now we want to extend the definition of amoeba to the case of abstract
varieties.

Let K be a field, V an abstract affine variety defined over the countable
subfield k. If we choose any immersion V ⊂ Kn, the family of the coordinate
functions {X1 . . . Xn} generates the ring k[V ] as a k-algebra.

Reciprocally, let F = {f1 . . . fn}, fi ∈ k[V ], be a fixed family whose
elements generate the ring k[V ] as a k-algebra. The family F induces a map
F :

F : V ∋ x→







f1(x)
...

fn(x)






∈ Kn

Proposition 1.6. The map F is injective, its image F(V ) is an algebraic
subvariety and F is a polynomial isomorphism between V and F(V ).

Proof : Injectivity follows easily as F generate k[V ]. The remaining may
be done as in the proof of [M2, I§3, prop.1] 2

If we identify V with F(V ), the function fi becomes the coordinate
function Xi. This shows that choosing an immersion in Kn is equivalent to
choosing a family F = (f1 . . . fn), fi ∈ k[V ], whose elements generate the
ring k[V ] as a k-algebra.

This construction may be generalized: we may take a countable family
F = (fj)j∈J , fj ∈ k[V ], with Card(J) ≤ ℵ0 such that its elements generate
k[V ] as a k-algebra. Such a family will be called a generating family.

A generating family F = (fj)j∈J defines an injective and proper map:

F : V ∋ x→(fj(x))j∈J
∈ Kn

Now suppose that the field K is endowed with an absolute value. Let F
be a fixed generating family. We define V ′ = {x ∈ V | ∀j ∈ J : fj(x) 6= 0}.
Note that V ′ may be empty (this may happen trivially if 0 ∈ F , but it may
also happen sometimes when V is reducible). The set V \ V ′ is a countable
union of Zariski closed set of V . We define the Log map:

9



Log : V ′ ∋ x→(log |fj(x)|)j∈J
∈ RJ

If F is finite Log = Log ◦F|V ′ , hence A(F(V )) = Log(V ′).
In the general case we may define the amoeba of V as

A(V ) = Log(V ′) ⊂ RJ

In this definition V ′ plays the role that in the previous section was played
by V ∩ (K∗)n.

The ideal of a variety is usually defined only for subvarieties of Kn.
Actually we can define it also for an abstract affine variety with a fixed
generating family.

We need the free k-algebra generated by the symbols (Xj)j∈J
, that will

be written as k[(Xj)]. If J is finite it is a usual polynomial ring, else it is
the ring of polynomials in an infinite number of variables. There exists a
unique k-algebras homomorphism ϕ : k[(Xj)]→k[V ] such that ϕ(Xj) = fj.
This homomorphism is surjective, as the elements fj generate k[V ]. We
define the ideal of V with reference to the family F : I = I(V ) = kerϕ.
This implies k[(Xj)]/I ≃ k[V ], hence I is a prime ideal if and only if V is
irreducible.

We want to define the ring of coordinates of V ′. If V is irreducible
we may simply define it as k[V ′] = k[(fj), (f

−1
j )] ⊂ k(V ). If V is reducible

we denote by S the multiplicative set generated from F . Then we define
k[V ′] = S−1k[V ], the localization with reference to S. Note that k[V ′] = 0
if and only if 0 ∈ S if and only if V ′ = ∅.

Now we may define the ideal of V ′. We need the k-algebra of Laurent
polynomials, k[(Xj), (X

−1
j )] = k[(Xj)j∈J

, (Yj)j∈J
]/({XjYj − 1}

j∈J
). There

exists a unique homomorphism ψ : k[(Xj), (X
−1
j )]→k[V ′] such that ψ(Xj) =

fj. We define the ideal of V ′ as before: I ′ = I(V ′) = kerψ. If F is finite V ′

is an affine variety, else it may not, but, in a formal sense, it has a defining
ideal.

In this more general context we can give the definition of tropical poly-
nomials and of tropical varieties. Let J be a (finite or) countable set. By a
tropical polynomial in the variables {Xj}j∈J

we mean an expression of the
form

P (X) =
⊕

ω∈AP

aω ⊙X⊙ω

Here AP ⊂ Z⊕J is a finite set, aω ∈ R and X⊙ω =
⊙

j∈J X
⊙ωj

j , a finite
product as all ωj but a finite number are 0. Such a polynomial defines a
convex piecewise linear function (for the linear structure of RJ , see below):

P : RJ ∋ x→P (x) = max
ω∈AP

(aω+ < x,ω >) ∈ R

10



Now one can easily give definition for real and complex tropical hyper-
surfaces in RJ , TR(P,Q), T (P ), similar to the definitions given in previous
subsection.

2 A Morgan-and-Shalen-like compactification

In this section we construct a compactification for complex and real varieties
that is similar to the compactification constructed by Morgan and Shalen in
[MS1]. The compactification presented here is more suitable to be described
by tropical objects, as it is constructed starting from the Log map.

2.1 Infinite-dimensional spaces

Let J be a (finite or) countable set. We need some properties of the space

RJ =
∏

j∈J

R. If endowed with the product topology it is a second countable,

metrizable Hausdorff space. If J is infinite it isn’t locally compact, but the

closed subsets of the form
∏

j∈J

[αj , βj ] are compact.

Proposition 2.1. Let V be a real or complex variety, and let F = {fj}j∈J

be a generating family for V . Then the amoeba A(V ) is a closed subset of
RJ .

Proof : As RJ is second countable it is enough to show that if a sequence
(yi) ⊂ A(V ) converges to a point y ∈ RJ , then y ∈ A(V ). Choose a
sequence (xi) ⊂ V ′ such that ∀i : Log(xi) = yi. The sequence (xi) is
contained in a compact subset of V , else we could find a subsequence xki

and an element fj ∈ F such that |fj(xki
)|−→∞ but this implies that Log(xi)

may not converge. Hence there is a subsequence (xhi
) converging to some

point x ∈ V . We know that x ∈ V ′, else we could find an element fj ∈ F
such that fj(x) = 0, and again Log(xi) may not converge. Hence we have
yki

−→y = Log(x) ∈ A(V ). 2

The space RJ has a natural structure of real vector space. The elements
ei = (δij)j∈J

are independent and they generate a subspace that will be

denoted by R⊕J =
⊕

j∈J

R. If J is finite this subspace coincides with the

whole RJ , else it is smaller. We have a natural pairing:

RJ × R⊕J ∈ (ξ, x)→ < ξ, x >=
∑

j∈J

ξjxj ∈ R

It is well defined as all elements of the sum but a finite number are 0.
By coordinate functions on RJ we mean the functionals ei : RJ ∋ ξ→ <
ξ, ei >∈ R.

11



We denote by ∼ the following equivalence relation on RJ \{0}: x ∼ y ⇔
∃α ∈ R>0 : x = (tj)j∈J

and y = (αtj)j∈J
. The quotient S = (RJ \ {0})/ ∼

is a standard sphere with dimension |J | − 1 when J is finite, else it is a sort
of infinite-dimensional sphere. In either case it is a metrizable Hausdorff
space. We will denote the projection by π : RJ \ {0}→S. Points of S will
be denoted by homogeneous coordinates: [tj]j∈J

= π((tj)j∈J
).

Suppose C ⊂
∏

j∈J

[αj , βj ] is a closed set not containing 0, it is a compact

subset of RJ \ {0}, hence π(C) is compact. However, if J is infinite, there
isn’t any such set C satisfying π(C) = S, as S is not compact.

Now we glue together RJ and S obtaining DJ , a closure at infinity of
RJ . If J is finite DJ is simply the compactification of RJ with a sphere at
infinity, while in the general case it is not compact.

As a set DJ is RJ ∪ S. Then we define a basis for the topology. Let U
be an open subset of S. A subset V is said to be an open conic subset
with base U if it may be written as V = U ∪ (π−1(U)∩H1∩· · ·∩Hn), where
Hi are coordinate semispaces, i.e. sets of the form {x ∈ RJ | eh(x) > c}
o {x ∈ RJ | eh(x) < c}, with h ∈ J , c ∈ R. Let B′, B′′ be basis for the
topology of RJ and S respectively. A basis for the topology of DJ is given
by:

B′ ∪ {V | V is an open conic subset with base U ∈ B′′}

With reference to this topology RJ is a dense open subset, and S is a
closed subset with empty interior.

Proposition 2.2. A sequence (xn) ⊂ RJ converges to a point x ∈ S if and
only if:

1. ∃j ∈ J : ej(xn)−→ + ∞ o ej(xn)−→−∞ in R.

2. For every subsequence (xnk
) ⊂ RJ \ {0} we have π(xnk

)−→x in S.

Proof : It follows from the definition of the topology. 2

When J is finite, |J | = n, we could have constructed DJ in a more
concrete way:

φ : Rn ∋ x→֒
x

√

1 + ‖x‖2
∈ Dn

The image of this map is the interior of Dn, and it sends rays of Rn in
rays of Dn and spheres of Rn centered in the origin in spheres of Dn. The
map φ may be extended to an homomorphism from DJ to Dn.
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2.2 Compactifications determined by a map

Let X be a locally compact Hausdorff topological space. By a compacti-
fication of X we mean a map η : X→Y , where Y is a compact Hausdorff
space, and η is a homeomorphism of X into a dense open subset of Y . We
denote the Alexandrov compactification of X by X̂ = X ∪ {∞}.

Let P be an Hausdorff space and t : X→P be a continuous map whose
image is relatively compact in P . We recall a construction given in [MS1] for
a compactification of X that will be called compactification determined
by t.

Let i be the map:

i : X ∋ x→(x, t(x)) ∈ X̂ × P

The codomain of the compactification is Y = i(X) ⊂ X̂ × P , and the
map is η = i|YX . The space Y is a closed subset of X̂ × t(X), hence it is
compact.

By p1 : X̂×P→X̂ and p2 : X̂×P→P we denote the canonical projection
on the first and the second factor, respectively.

The set B = (p1|Y )−1(∞) ⊂ Y is a closed subset with empty interior,
and its complement Y \ B is equal to η(X), hence η(X) is a dense open
subset of Y . This shows that η is a compactification of X. The set B is said
to be the set of ideal points of the compactification.

The projection p2|B is a homeomorphism with its image, (as B ⊂ {∞}×
P ), hence we may identify B with a subset of P . We may also identify X
with η(X), and so we may think of Y as X ∪ B. A sequence {xn} ⊂ X
converges to a point b ∈ B if and only if xn−→∞ in X̂ and t(xn)−→b in B.

If the spaces X, X̂ e P are first countable this fact characterizes the
topology of Y , and we may describe B as: B = {b ∈ P | ∃{xn} ⊂ X :
xn−→∞ in X̂ e t(xn)−→b in P}.

2.3 Compactification of complex varieties

Let V be a complex abstract affine variety defined over the countable field
k ⊂ C, embedded with the classical topology, and let F = k(V ). We fix a
generating family F ⊂ k[V ], F = (fj)j∈J

and we denote by V ′ the subset
{x ∈ V | ∀j ∈ J : fj(x) 6= 0}.

We denote by θ : V ′→DJ the map Log when thought as a map taking
values in DJ , the closure at infinity of RJ

Let V1 . . . Vn be the irreducible components of V . For every component
Vi there is a prime ideal Pi ⊂ k[V ] such that k[Vi] = k[V ]/Pi. We define
the set Fi as set of the images in k[Vi] of the elements of F . The set Fi is a
generating family for Vi. With reference to this family we define the set V ′

i

and the ring k[V ′
i ]. The Log map for V ′

i is exactly the restriction of the Log
map for V ′.

13



To take the compactification defined by θ we need that the closure of
the image θ(V ′) ⊂ DJ is compact. This is obvious when J is finite.

Proposition 2.3. The set θ(V ′) ⊂ DJ is compact.
Proof : Without loss of generality we may add the hypothesis that V is

irreducible, as compactness is perserved by finite unions. As DJ is second
countable we only need to prove that every sequence (yn) ⊂ θ(V ′) has a
subsequence that converges to some point y ∈ DJ . Take a sequence (xn) ⊂
V ′ such that ∀i : θ(xi) = yi. If xn is infinitely often in a compact subset
of V ′ we can extract a subsequence (xkn

) converging to some point x ∈ V ′,
so that the subsequence (ykn

) converges to y = θ(x) ∈ θ(V ′). Else every
compact subset of V ′ contains only a finite number of elements of xn. We
conclude using some notation and proposition that will be introduced in
subsection 6.6. From xn we may extract a quasi-valuating subsequence
(xhn

). By proposition 6.17 there exists a valuation v compatible with (xhn
).

By lemma 6.18 we may conclude that the subsequence yhn
= θ(xhn

) has
limit in DJ . 2

We denote by V ′comp = V ′∪B(V ′) the compactification of V ′ determined
by θ. The set B(V ′) may be seen as a subset of DJ :

B(V ′) = {b ∈ DJ | ∃{xn} ⊂ V ′ : xn−→∞ in V̂ ′ e θ(xn)−→b in DJ}

xn−→∞ in V̂ ′ ⇒ ‖Log(xn)‖−→∞ ⇒ ‖θ(xn)‖−→∞. Hence B(V ′) ⊂ S.
Recall that π : RJ \ {0}→S is the projection in the quotient, we get:

B(V ′) = {b ∈ S | ∃{xn} ⊂ V ′ : xn−→∞ in V̂ ′ e π(Log(xn))−→b in S}

If 0 6∈ Log(V ′) we could have defined θ = π ◦ Log : V ′→S, and we had
gotten the some compactification with the same set of ideal points B(V ′).

When J is finite we may use the “concrete” description of DJ as Dn:

φ : Rn ∋ x→֒
x

√

1 + ‖x‖2
∈ Dn

The compactification is defined by the map θ = φ◦Log, exactly the map
used by [Be2].

2.4 Compactification of real varieties

Let Z ⊂ Rn be a real variety defined over the countable subfield k ⊂ R,
and let ZC be its complexification, i.e. the smaller complex variety in Cn

containing Z. We may choose k such that ZC is defined over k. We have
that k[ZC] = k[Z] and ZC ∩ Rn = Z.

14



From now on we fix a generating family F = (fj)j∈J
⊂ k[Z] for Z, and

we have Z ′ = {x ∈ Z | ∀j ∈ J : fj(x) 6= 0}. The family F is also a generating
family for ZC, so it defines a compactification Z ′

C

comp = Z ′
C
∪B(Z ′

C
).

We define the compactification Z ′comp of Z ′ to be the closure of Z ′ in
Z ′

C

comp. Hence we have B(Z ′) = Z ′ ∩ B(Z ′
C
), Z ′comp = Z ′ = Z ′ ∪ B(Z ′).

The set B(Z ′) may be described explicitly as {b ∈ S | ∃{xn} ⊂ Z ′ :
xn−→∞ in Ẑ ′ and π(Log(xn))−→b in S}.

Actually we need something more, we want to define a compactifica-
tion for a connected component of a real variety. So let C be a con-
nected component of Z ′, we take as compactification its closure in Z ′comp,
so that B(C) = C ∩ B(Z ′) and Ccomp = C = C ∪ B(C). Explicitly
B(C) = {b ∈ S | ∃{xn} ⊂ C : xn−→∞ in Ĉ and π(Log(xn))−→b in S}.

So for a real variety we have a boundary that is contained in the bound-
ary of its complexification.

2.5 Extension to non-generating families

We may easily construct compactifications also from some finite non-
generating family F ⊂ k[V ].

Let V be a complex affine variety defined over the countable subfield
k ⊂ C. We choose a finite family F = {f1 . . . fn}, and we define the map

F : V ∋ x→







f1(x)
...

fn(x)






∈ Cn

Let V1 . . . Vn the irreducible components of V . We denote by Wi the
closure (with reference to the Zariski topology) of the image of Vi through
the map F . The closed sets Wi are affine irreducible varieties (see [M2, I§8,
prop. 1]), and are defined over k. The map F , thought as a map from Vi to
Wi is a dominating map, hence its image contain a non empty, Zariski-open,
subset Ui ⊂Wi (see [M2, VIII§3, thm. 3]).

Every Ui is dense (with reference to the classical topology) in Wi (see
[M2, I§10, thm. 1]), hence if we denote by W the closure (in the classical
topology) of the image of F we have that W = W1 ∪ · · · ∪Wn. Hence W is
a complex affine variety defined over k, and F may be seen as a dominating
map from V to W , whose image is dense in the classical topology. So
F induces an identification of k[W ] with a subring of k[V ], the k-algebra
generated by the functions f1 . . . fn.

We choose the family {X1 . . . Xn} as a generating family for W . We may
construct the compactification of W ′ with reference to this family: W ′comp =
W ′ ∪ B(W ′). The map F may be seen as a map from V ′ = {x ∈ V | ∀i ∈
{1 . . . n} : fi(x) 6= 0} toW ′, and also as a map F : V ′→W ′comp. This way the
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image of F is relatively compact, so we may consider the compactification
of V ′ determined by F , and we denote it again by V ′comp = V ′ ∪B(V ′).

If we want to study the set of ideal points B(V ′) through the methods
presented above, we need some additional hypothesis on F .

If we are interested to the whole B(V ′) the hypothesis we need is that
F : V ′→W ′ is a proper map. With this hypothesis the set B(V ′) ⊂W ′comp

may be described as B(V ′) = {b ∈ W ′comp | ∃{xn} ⊂ V ′ : xn−→∞ in
V̂ ′ and F(xn)−→b in W ′comp}. By properness if {xn} ⊂ V ′ is a sequence
the property xn−→∞ in V ′ is equivalent to F(xn)−→∞ in W ′. Hence
B(V ′) = B(W ′).

In the following we are interested in the compactification of a connected
components of a real variety. Suppose know that V is a complex variety
defined over the countable field k ⊂ R, and that C is a connected components
of the real part V ′

R
. We may define a compactification Ccomp = C ∪ B(C)

as the closure of C in V ′comp, B(C) being Ccomp ∩ B(V ′). To study B(C)
through the methods presented above we need a weaker hypothesis, simply
we need F : C→W ′ to be a proper map. With this hypothesis we have that
F(C) is contained in a connected components D of W ′

R
, and that B(C) ⊂

B(D) ⊂ B(W ′).

3 Tropical description

In this section we want to see how Maslov dequantization may be useful to
describe the compactification defined above.

3.1 Compactification in the real case

If V ⊂ Rn and F = {X1 . . . Xn}, we may decompose Rn in its 2n “orthants”,
i.e. if we fix an s ∈ {−1, 1}n, we define Rn

s = {x | ∀i : xisi > 0}. Then
we consider the induced decomposition on V : Vs = V ∩ Rn

s . In the general
case, when F = {fj}j∈J

is a generic generating family, this corresponds to

decompose V in pieces, each of which indexed by an element s ∈ {−1, 1}J :
Vs = {x ∈ Z | ∀j : fj(x)sj > 0}. In the following we fix such an s.

For every h > 0 we define the map DJ
h :

DJ
h : V ′ ∋ x→(Dh(|fj(x)|))j∈J

∈ RJ

The image DJ
h (Vs) will be denoted by Vh,s. The map DJ

1 is the Log map.
Then we use these maps to construct a dequantifying deformation of Vs:

D : Vs × (0,+∞) ∋ (x, h)→(DJ
h (x), h) ∈ RJ × (0,+∞)

This map is a homeomorphism of the product Vs × (0,+∞) in W =
⋃

h>0 Vh × {h} ⊂ Rn × (0,+∞). So the image set Ws may be viewed as
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a deformation of Vs, the deformation induced by Maslov dequantization.
The map is proper so Ws is closed. Let Ws be the closure of this set in
RJ × [0,+∞). As Ws is a closed subset of RJ × (0,+∞) we have that Ws

is simply the union of Ws with some subset of RJ × {0}, that will be called
V0,s.

Proposition 3.1. The set V0,s is a cone.
Proof : This is easy as soon as one notes that ∀x ∈ R>0 : Dh(x) =

hD1(x). If x ∈ V0 there exists a sequence (xn, hn) ⊂W converging to x.
For every positive real number λ the sequence

yn = (DJ
λhn

((DJ
hn

)
−1

(xn)), λhn) ∈ Vλhn
× {λhn}

is in W , and as DJ
λhn

((DJ
hn

)
−1

(xn) = λxn it tends to λx. 2

Now we relate the set V0,s with the boundary constructed in the previous
section. We denote by Vs

comp the closure of Vs in V ′comp, and we define
B(Vs) = B(V ′) ∩ Vs

comp.

Proposition 3.2. The cone V0,s is equal to CB(Vs), the cone over the
boundary.

Proof : V0,s ⊂ CB(Vs): If x ∈ V0,s, x 6= 0, there exists a sequence
(xn, hn) ⊂ W converging to x. We pull it back on Vs in this way: yn =

(DJ
hn|Vs

)
−1

(xn) ∈ Vs. Now Log(yn) = DJ
1 (yn) = 1

hn
xn is a sequence tending

to infinity in Vs. The sequence of projections in the sphere, π(Log(yn)) =
π(xn), also converges to π(x), so π(x) ∈ B(Vs).

CB(V +) ⊂ V0: If x ∈ CB(V +), x 6= 0, there exists a sequence (yn) ⊂ Vs

converging to π(x). As x 6= 0 we can find an index j such that the j-th
coordinate of x is equal to ξ 6= 0. Let zn be the j-th coordinate of DJ

1 (yn).
We may suppose zn 6= 0. Let hn = ξ

zn
, a sequence converging to 0, as

zn tends to infinity. The sequence (DJ
hn

(yn), hn) ∈ Ws converges to x, so
x ∈ V0,s. 2

Now we try to give a description of CB(Vs), using this information. First
we recall a fact about tropical polynomials.

Proposition 3.3. Let

P =
⊕

ω∈AP

aω ⊙X⊙ω

be a tropical polynomial, and let

Ph =
⊕

h

ω∈AP

aω ⊙h X
⊙hω
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be the corresponding family of polynomials in Sh. Then the family Ph con-
verges uniformly to P .

Proof : This follows from the inequality a⊕ b ≤ a⊕h b ≤ a⊕ b+ log(2)
that implies

∀x ∈ R : P (x) ≤ Ph(x) ≤ P (x) + h log(N)

where N is the cardinality of AP . 2

Let I ⊂ k[(Xj), (X
−1
j )] be the ideal of V ′. An element f ∈ I may be

written in the form:

f =
∑

ω∈Z⊕J

aωX
ω

Where Xω =
∏

j∈J X
ωj

j , well defined as all ωj but a finite number are 0,

and the set Af = {ω ∈ Z⊕J | aω 6= 0} is finite.

Let f ∈ I and s ∈ {−1, 1}J , we want to separate the positive monomial
of f from the negative ones. Let ω ∈ Af . We choose an element x ∈ Vs, the
number

∏

j∈J fj(x)
ωj has a sign depending only on s and ω, but not on the

value of x. This sign is, by definition, the sign of the monomial respect to
s. We denote by A+

f,s ⊂ Af the set of the ω’s whose monomial has positive

sign respect to s, and by A−
f,s ⊂ Af the set of negative ones. Now we split

f in its positive and negative part:

f+ =
∑

ω∈A+

f,s

aωX
ω ; f− =

∑

ω∈A−

f,s

(−aω)Xω

So f = f+ − f−.
Then we define the tropical polynomials:

f+
0 =

⊕

ω∈A+

f

0 ⊙X⊙ω =
⊕

ω∈A+

f

X⊙ω

f−0 =
⊕

ω∈A−

f

0 ⊙X⊙ω =
⊕

ω∈A−

f

X⊙ω

Proposition 3.4. The boundary is contained in an intersection of real trop-
ical hypersurfaces:

CB(Vs) ⊂
⋂

f∈I

TR(f+
0 , f

−
0 )

In other words for all f ∈ I a point (xj)j∈J
∈ CB(Vs) ∈ RJ satisfies the

relation
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max
ω∈A+

f,s





∑

j∈J

< x,ω >



 = max
ω∈A−

f,s





∑

j∈J

< x,ω >





Proof : Given a point x ∈ V ′ we denote the element (fj(x))j∈J
∈ RJ by

F(x). By definition of I every element x ∈ Vs verifies:

∀x ∈ Vs : f+(F(x)) = f−(F(x))

So we have a set of equations, one for each polynomial in I, with coeffi-
cients in R>0.

We are interested in the set Vh,s, the image of Vs under the map DJ
h .

For every polynomial f ∈ I we take the transformation of its positive and
negative perts through Dh.

f+
h = Dh ◦ f+ ◦ (DJ

h )
−1

=
⊕

h

ω∈A+

f

Dh(aω) ⊙X⊙ω

f−h = Dh ◦ f− ◦ (DJ
h )−1 =

⊕

h

ω∈A−

f

Dh(−aω) ⊙X⊙ω

As Dh is a semifields isomorphism we have that Vh,s = {x ∈ RJ | ∀f ∈
I : f+

h (x) = f−h (x)}.
We may put all these equation together finding equations for W :

W = {(x, h) ∈ RJ × (0,+∞) | ∀f ∈ I : f+
h (x) = f−h (x)}

Every coefficient of the polynomials f+
h and f−h tends to 0, the multiplicative

neutral element in the semirings Sh, h ≥ 0. So the functions f+
h and f−h

converges, respectively, to the functions f+
0 and f−0 . This means that, as

functions on RJ × (0,+∞) they may be continuously extended to RJ ×
[0,+∞] by f+

0 and f−0 Hence W is contained in the set {(x, h) ∈ RJ ×
[0,+∞) | ∀f ∈ I : f+

h (x) = f−h (x)}. So V0,s is contained in {∀f ∈ I : f+
0 =

f−0 }. 2

So we have shown that the cone over the boundary is contained in an
intersections of real tropical hypersurfaces, that is a polyhedral complex. In
some cases it is possible to show that CB(Vs) is a polyhedral subcomplex,
we will do this for Teichmüller spaces.

We can give an estimate for the dimension of this complex, as it is
contained in the cone over the boundary of the complexification. In the fol-
lowing section we will see that the dimension of the cone over the boundary
of a complex variety is equal to the dimension of the variety.
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3.2 Compactification in the complex case

Let V be a complex algebraic variety defined over k ⊂ C, and let F be a
generating family for V . Again we want to use Maslov dequantization on
V .

As before, for every h > 0 we define the map DJ
h :

DJ
h : V ′ ∋ x→(Dh(|fj(x)|))j∈J

∈ RJ

The image DJ
h(V ′) will be denoted by Vh. Again DJ

1 is the Log map, so
V1 is the amoeba of V .

We define the map:

D : V ′ × (0,+∞) ∋ (x, h)→(DJ
h (x), h) ∈ RJ × (0,+∞)

We call W the image of this map. The map is proper so W is closed.
Let W be the closure of this set in RJ × [0,+∞). As before W is simply the
union of W with some subset of RJ × {0}, that will be called V0.

Proposition 3.5. The set V0 is a cone, and is equal to CB(V ′), the cone
over the boundary.

Proof : See the proof of propositions 3.1 and 3.2 2

Let I ⊂ k[(Xj), (X
−1
j )] be the ideal of V ′. An element f ∈ I may be

written in the form:

f =
∑

ω∈Z⊕J

aωX
ω

With Af = {ω ∈ Z⊕J | aω 6= 0}. We associate with f a tropical polyno-
mial f0:

f0 =
⊕

ω∈Af

X⊙ω

We use the notation T (I) =
⋂

f∈I T (f0), the intersection over all f ∈ I
of the tropical hypersurface defined by f0.

Proposition 3.6. Then CB(V ′) ⊂ T (I).
Proof : It follows from the formula 2, that holds also for abstract vari-

eties. If f ∈ I, f =
∑

ω∈Af
aωX

ω, then every point x ∈ Vh satisfies:

∀w ∈ Af : Dh(|aw|) ⊙h y
⊙hw ≤

⊕

h

ω∈Af\{w}

Dh(|aω|) ⊙h y
⊙hω
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As limh−→0Dh(aω) = 0, a point y ∈ V0 satisfies:

∀w ∈ Af : X⊙w ≤
⊕

ω∈Af\{w}

X⊙ω

Hence y ∈ T (f). 2

We will show that CB(V ′) = T (I) later. First we want to show how the
set T (I) may be described as the image of a set of valuations, as in theorem
1.4. Let A = k[V ′] = k[(fj), (f

−1
j )], the ring of coordinate of V ′ as defined

in subsection 1.4. Let SR be the set of real valuation of A trivial over k. We
want to show that T (I) is equal to the image of the map

z : SR ∋ v→(−v(fj))j∈J ∈ RJ

Theorem 3.7. z(SR) = T (I).
Proof : When J is finite the thesis follows by proposition 1.6 and by

[Be2, thm. 2]. The same argumentation may be extended to the general
case:

z(SR) ⊂ T (I): Let ξ ∈ z(SR) ⊂ S. There exists a valuation
v : k[V ′]→R ∪ {+∞} such that ξ = (−v(fj))j∈J

∈ RJ . This is a val-

uation of k[V ′] = k[(Xj), (Xj)
−1]/I but it may be lifted to a valuation of

k[(Xj), (Xj)
−1] sending the ideal I in +∞. Let g ∈ I, g =

∑

aωX
ω, we have

that v(aωX
ω) =

∑

j∈J v(Xj)ωj =
∑

v(fj)ωj = − < ξ, ω >. As v(g) = +∞,
the value minω∈Ag (v(aωX

ω)) is assumed at least twice, so the functional
− < ξ, ω > has maximum in at least two points of Ag, hence ξ ∈ T (g).

T (I) ⊂ z(SR): Let [ξ] ∈ D(V ′). We define a valuation in the following
way:

v : k[(Xj), (Xj)
−1] ∋ f→v(f) = inf

ω∈Af

− < ξ, ω >∈ R ∪ {+∞}

We denote by S ⊂ k[(Xj), (Xj)
−1] the multiplicative subgroup generated

by the symbols Xj . The ideal of V ′, I, does not intersect S, moreover
if f ∈ I, we know that the minimum value of − < ξ, ω > over Af is
achieved at least twice, hence there are at least two monomials of f with
minimal valuation, say Xω′

,Xω′′

. This guarantees that the valuation of
f − Xω′

is equal to v(f). If s ∈ S, and if v(f) = v(s), we have that
v(f − s) ≥ min(v(Xω′

− s), v(f − Xω′

) ≥ v(f). Hence the hypothesis of
[Be1, coroll. 1] holds. This theorem, together with the note that follows
it, guarantees the existence of a valuation v′ of k[(Xj), (Xj)

−1] such that:
∀f ∈ S : v′(f) = v(f) and ∀f ∈ I : v′(f) = +∞. By lemma 1.5, this
valuation defines a valuation v′′ of k[V ′] such that z(v′′) = ξ. 2

Now we want to show that CB(V ′) = T (I). For an hypersurface this is
a particular case of [Mi, coroll. 6.4].
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Proposition 3.8. If V ⊂ Cn is the hypersurface defined by the polynomial
f , and the generating family F is the family of coordinates {X1 . . . Xn}, then
CB(V ′) = T (f0).

Proof : Let K be the field of Puiseux series in t with complex coefficients.
The coefficients of f may be viewed as constant series, becoming elements
of K whose valuation is 0. If we apply [Mi, coroll. 6.4] to the polynomial
f , it states that the sets Vh converge to V0 in the Hausdorff metric when h
tends to 0. This fact implies the conclusion. 2

When F is finite it follows from a result from [Be2] and one from [BG].

Proposition 3.9. If F is finite, then CB(V ′) = T (I).
Proof : We only need to show that T (I) ⊂ CB(V ′). By proposition 1.6

we may suppose that V ⊂ Cn and that F = {X1 . . . Xn}. In [Be2], in step
(4) of the proof of thm. 2, it is shown that all points of T (I) with rational
coordinates are in CB(V ′). Then in [BG] it is shown that rational points
are dense in T (I). 2

The same result is true when F is infinite, and will be proved in section
6.

If J is finite the dimension of B(V ′) may be computed:

Theorem 3.10. If J is finite and if V is irreducible and dimC(V ) = m,
then B(V ′) is a finite union of (m− 1)-dimensional subspheres.

Proof : See [Be2, thm. 3]. 2

4 Algebraic structure on Teichmüller spaces

To apply the construction presented above to Teichmüller spaces we need
an “algebraic structure” on them. This topic was treated in [MS1], using
some theory developed in [CS1]. In this section we sketch the construction
of the “algebraic structure” and we fix some notations that will be useful in
the following.

Note that the variety Xpar
R

(Γ) that we will define is a real variety defined
over Q, and it is well defined up to polynomial isomorphisms as it is the real
part of a complex variety.

4.1 Variety of characters

Let Γ be a finitely generated group, and let R(Γ) be the variety of rep-
resentations of Γ in SL2(C), R(Γ) = {ρ : Γ→SL2(C)}, endowed with
its structure of complex affine variety defined over Q. We denote by
τγ ∈ Q[R(Γ)] the functions τγ : R(Γ) ∋ ρ→ tr(ρ(γ)) ∈ C.

We define the character of a representation ρ ∈ R(Γ) to be the function
χρ : Γ ∋ γ→ tr(ρ(γ)) ∈ C. We will denote by X(Γ) the set of all character
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of representations in R(Γ). This set too may be endowed with a structure
of affine complex variety defined over Q (see [CS1]), a structure that turns
the natural map t : R(Γ) ∋ ρ→χρ ∈ X(Γ) in a regular map over Q. This
variety will be called variety of characters.

For γ ∈ Γ, the value of τγ only depends on the character of its argument,
hence it induces a function Iγ : X(Γ) ∋ χρ→τγ(ρ) = tr(ρ(γ)). The functions
Iγ will be called trace functions. The trace functions belong to the coor-
dinate ring Q[X(Γ)]. Moreover there exists a finite set A ⊂ Γ such that the
family {Iγ}γ∈A

generates the ring Q[X(Γ)] as a Q-algebra (see [CS1]).
The function Iγ only depends on the conjugation class c of γ, hence we

can write it as Ic. We denote by C the set of conjugation classes of elements
in Γ, and we denote the family of all trace functions by G = {Ic}c∈C . This is
a countable family, and it is an example of what will be called a generating
family.

We want to focus on representations of Γ in SL2(R), corresponding to
points of the real part of R(Γ), RR(Γ). The characters of these represen-
tations are in the real part of X(Γ), XR(Γ) because the map t is a regular
map over the field Q, but the image t(RR(Γ)) ⊂ XR(Γ) is generally a strict
subset of XR(Γ).

4.2 Fundamental groups of surfaces

Let S be a compact connected orientable surface of genus g with k boundary
components and let Γ = π1(S). If k > 0, for every boundary component we
may choose an element βi ∈ [Γ,Γ] that has the same free homotopy class.

Suppose, in the following, that χ(S) < 0. So we can put on
◦
S a complete

hyperbolic structure of finite volume. The holonomy representation of this
structure is a discrete and faithful representation ρ : Γ→PSL2(R), such that
for every component of ∂S the corresponding element βi is parabolic, i.e.
| tr(ρ(βi))| = 2. The Teichmüller space of S may be defined as the set of
conjugation classes of all representations satisfying these properties. This
space depends only on g and k, and will be denoted by τk

g .
The sets Rpar(Γ) = {ρ ∈ R(Γ) | ∀i : tr(ρ(βi)) = ±2} and Xpar(Γ) =

{χ ∈ X(Γ) | ∀i : Iβi
(χ) = ±2} are affine subvarieties of R(Γ) and X(Γ)

respectively, both defined over Q. Again we focus on real parts, Rpar
R

(Γ) =
Rpar(Γ) ∩RR(Γ) and Xpar

R
(Γ) = Xpar(Γ) ∩XR(Γ).

We want to identify the Teichmüller space of S with a connected com-
ponent of Xpar

R
(Γ). The keypoint is a result from Thurston’s stating that

all representation whose conjugation class belongs to τk
g may be lifted to

representations taking values in SL2(R).
We define DR(Γ) ⊂ R(Γ) as the subset of discrete faithful represen-

tations, DX(Γ) = t(DR(Γ)) ⊂ X(Γ) and their “real parts”, DRR(Γ) =
DR(Γ) ∩RR(Γ), and DXR(Γ) = DX(Γ) ∩XR(Γ).
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The conjugation class of a representation in DR(Γ) may be identified
with its character, as representations in DR(Γ) are irreducible (see [MS1,
lemma 3.1.3]) and by [CS1, prop. 1.5.2] if an irreducible representation has
the same character as an other representation, then they are conjugated.

The subset of R(Γ) that is closer to τk
g is DRpar

R
(Γ) = DR(Γ)∩Rpar

R
(Γ).

By [MS1, prop. 3.1.4] the set of characters of these representation is equal
to the set DXpar

R
(Γ) = DX(Γ) ∩Xpar

R
(Γ).

The subsetDRpar
R

(Γ) may be seen as the set of representations in SL2(R)
that composed with the quotient in PSL2(R) are the holonomy of a hyper-
bolic structure on S (they remain faithful as Γ is torsion-free). The set
DXpar

R
(Γ) may be seen as the set of conjugation classes of these represen-

tations. This set is a union of connected components (with reference to the
classical topology) of Xpar

R
(Γ) (see [MS1, prop. 3.1.8]). We want to identify

the Teichmüller space of S with one of these components.
We consider the following action of H = Hom(Γ,Z2) on DXpar

R
(Γ): H×

DXpar
R

(Γ) ∋ (h, χρ)→χρ′ ∈ DXpar
R

(Γ), where ρ′(γ) = (−1)h(γ)ρ(γ) and

χρ′(γ) = (−1)h(γ)χρ(γ). Two elements have the same orbit if and only if
they induce the same conjugation class of representation in the quotient
PSL2(R), hence the quotient by this action may be identified with τk

g .

Lemma 4.1. Trace functions Iγ never vanish on DXpar
R

(Γ).
Proof : Suppose Iγ(χρ) = 0. This means ρ(γ) ∈ SL2(C) and tr(ρ(γ)) =

0, hence the Jordan form of ρ(γ) is
(

i 0
0 −i

)

. The matrix ρ(Γ) has finite order,
but Γ is a torsion-free group, hence ρ may not be faithful. 2

Let h ∈ H, h 6= Id. There exists γ ∈ Γ such that h(γ) = −1, hence
∀χ : Iγ(χ) = −Iγ(hχ). By lemma 4.1, if χ is a character,χ and hχ belong to
different connected components of DXpar

R
(Γ). In other words H acts freely

on the set of connected components of DXpar
R

(Γ).
The identification with DXpar

R
(Γ)/H induces a topology on τk

g , such that
it is homeomorphic to an euclidean ball. So the quotient is connected, and
this implies that the action of H on the set of connected components of
DXpar

R
(Γ) is transitive. Hence the quotient DXpar

R
(Γ)/H may be identified

with any of the connected components of DXpar
R

(Γ), each of which is a
connected component of Xpar

R
(Γ).

4.3 Length and trace functions

We have seen that the Teichmüller space of a surface S may be identified
with a connected component of Xpar

R
(Γ) (where Γ = π1(S)), the real part

of Xpar(Γ). We have also defined the family of functions G = {Ic}c∈C . If
two points of DXpar

R
(Γ) has the same orbit for the action of H, the values

of functions Ic on these points coincide up to sign. So |Ic| is a well defined
function on τk

g , and will be called, again, a trace function. Trace functions
are closely related to length functions: ℓc([h]) = infα lh(α), where h is an

24



hyperbolic metric on S, [h] is the corresponding elements of τk
g , lh is the

function that send a curve in its h-length, and the inf is taken on the set of
all closed curves whose free homotopy class is c. The relation between trace
functions and length function is given by |Ic([h])| = 2cosh(1

2ℓc([h])). This
implies that |Ic([h])| ≥ 2.

5 Compactification of Teichmüller spaces

5.1 Thurston boundary

Let S be a compact connected surface with genus g and with k boundary
components, and let Γ = π1(S). The set DXpar

R
(Γ) is a union of connected

components of Xpar
R

(Γ). We choose G = {Ic}c∈C , as a generating family for
Xpar

R
(Γ), the set J = C being countable. As no elements of G vanish on

DXpar
R

(Γ), is well defined the compactification, as in subsection 2.4, with

DXpar
R

(Γ) = DXpar
R

(Γ) ∪B(DXpar
R

(Γ)).
As the action of H = Hom(Γ,Z2) commutes with the Log map, we may

extend the identification between two connected components induced by
an element of H to an identification between the compactifications. This
way we may construct a compactification of the Teichmüller space: τk

g =

τk
g ∪ B(τk

g ). The boundary B(τk
g ) may be seen as a subset of S. This is

because the boundary of a connected component of DXpar
R

(Γ), as a subset
of S, does not depend on the chosen component.

We may define the Log map on τk
g as:

Log : τk
g ∋ h→(log(|Ic(h)|))c∈C ∈ RC

Hence we have: B(τk
g ) = {b ∈ S | ∃{xn} ⊂ τk

g : xn−→∞ in τk
g and

π(Log(xn))−→b in S}.

Proposition 5.1. This compactification of Teichmüller spaces is the same
as the one described by Thurston, with a correspondence that sends the pro-
jective class of a measured foliation f in the point [I(f, c)]c∈C ∈ S, I(f, c)
being the measure of c with reference to f .

Proof : If (xn) ⊂ τk
g is a sequence converging to f in Thurston compact-

ification, then [I(f, c)]c∈C is the limit of the sequence [ℓc(xn)]c∈C , but this is
equal to the limit of the sequence [Ic(xn)]c∈C (see subsection 4.3). 2

Let A ⊂ C, and suppose the family FA = {Ic | c ∈ A} to be a generating
family, or a finite family. This family defines a compactification ofDXpar

R
(Γ),

and, as before, a compactification of τk
g . Suppose, from now on, the map

F to be proper on DXpar
R

(Γ). We will denote by BA(τk
g ) the boundary

constructed using the family FA, and by CBA(τk
g ) the cone over this set.

Let A ⊂ B ⊂ C, we denote the canonical projection by πB,A : RB→RA.
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Lemma 5.2. πB,A(CBB(τk
g )) ⊂ CBA(τk

g ).

Proof : We will use the description of CBB(τk
g ) and CBA(τk

g ) in terms of

valuations. Let x ∈ CBB(τk
g ). If πB,A(x) = 0 there is nothing to prove. Else

there exists a valuation v of the ring generated by FB such that z(v) = x.
We denote by w the valuation v restricted to the ring generated by FA.
w ∈ S′

R
as πB,A(x) 6= 0. Hence πB,A(x) = z(w) ∈ CBA(τk

g ). 2

Let A ⊂ B ⊂ C be as before. We say A and B to be compat-
ible if π−1

B,A(0) ∩ CBB(τk
g ) = {0}. With this hypothesis the restricted

projection πB,A|CBB(τk
g ) induces a map between the spherical quotients:

πB,A : BB(τk
g )→BA(τk

g ).
The compatibility relation is transitive. If A ⊂ B ⊂ C we have that

πC,A = πC,B ◦ πB,A.
If A ⊂ B ⊂ C are compatible family we may define a map p : τk

g ∪

BB(τk
g )→τk

g ∪ BA(τk
g ), defined by the identity on τk

g and by the map πB,A

over BB(τk
g ).

Proposition 5.3. The map p defined above is continuous.
Proof : Continuity over τk

g is obvious. Now we take a point x ∈ BB(τk
g )

and a sequence {xn} ⊂ τk
g ∪BB(τk

g ) converging to x. We only need to show
that every subsequence {yn} has a subsequence {ynk

} such that p(ynk
) tends

to p(x). If {yn} is infinitely often in BB(τk
g ), we may take a subsequence

contained in the boundary, and we may conclude by continuity of πB,A.
Else {yn} is infinitely often in τk

g , so we may extract a subsequence {ynk
}

contained in τk
g and quasi-valuating. Let v be a valuation compatible with

{ynk
}. We know that {ynk

} converges to [−v(Ic)]c∈B in τk
g ∪ BB(τk

g ), and

that it converges to [−v(Ic)]c∈A in τk
g ∪BA(τk

g ). The former point is x, and
the latter is p(x). 2

Corollary 5.4. The map p is surjective (so also the map πB,A is).
Proof : p is a continuous map, from a compactum to an Hausdorff space,

so it is a closed map. The image is dense (as it contains τk
g ), so the map is

surjective. 2

Let A ⊂ C. We define A to be equivalent to C if A is compatible with
C and πC,A is injective. With this hypothesis the map p between the com-
pactification defined by C and the one defined by A is an homeomorphism.
This is the proof of the following proposition:

Proposition 5.5. The Thurston boundary for Teichmüller space τk
g may be

constructed starting by any family FA with A equivalent to C. 2

5.2 PL-structure on the boundary

Now it is useful to find some finite subset of C that are equivalent to C. We
start finding some compatible subsets.
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Proposition 5.6. Let A ⊂ C. If FA is a generating family for Xpar(Γ),
then A is compatible with C.

Proof : By contradiction, we suppose the existence of a non zero el-
ement x ∈ CB(τk

g ) such that πC,A(x) = 0. There exists a valuation
v : k[V ′]→R ∪ {+∞} such that ∀c ∈ A : v(Ic) = 0, and ∃c ∈ C : v(Ic) < 0.
This is impossible as Ic is a polynomial in the elements of FA, so v(IC) ≥
maxc∈A{v(Ic)} ≥ 0. 2

Proposition 5.7. Suppose that A ⊂ C is a system of free homotopy classes
of curves that fill up, i.e. every free homotopy class of closed curves on
the surface has non zero intersection form with at least one of those curves.
Then A is compatible with C

Proof : Let x ∈ B(τk
g ). Let f and v be respectively a measured foliations

and a valuation associated to x. From proposition 5.1 we know that if
I(f, c) 6= 0, then v(Ic) 6= 0.

If A is a system that fills up we have that for all x ∈ B(τk
g ) there exists a

c ∈ A such that I(f, c) 6= 0, and this implies v(Ic) 6= 0. So A is compatible.
Moreover we have shown that is A fills up the point [vx(Iγ)]γ∈A ∈ S is

equal to the point [I(fx, γ)]γ∈A ∈ S. This will be useful in the proof of the
following proposition. 2

Proposition 5.8. There exists a finite set A ⊂ C, consisting on 9g− 9+ 3b
free homotopy classes of simple curves, that is equivalent to C.

Proof : There exists 3g − 3 + b simple curves on S (denoted by
K1 . . . K3g−3+b) that decompose it in 2g−2+ b pair-of-pants, b of them con-
taining a boundary component of S. The curve Ki is the common boundary
of two pair-of-pants whose union will be denoted by Pi. We denote byK ′

i,K
′′
i

the two simple closed curves in Pi defined by Thurston in the classification
of measured foliation (See [FLP]). Let A be the set of the free homotopy
classes of the curves Ki, K

′
i and K ′′

i . This set fills up, so A is compatible
with class. To show that it is equivalent we need to show that the map πC,A

is injective. This follows from Thurston’s classification of measured foliation
(see also the proof of the previous proposition). 2

Now we fix a connected component C ⊂ DXpar
R

(Γ), and we denote by X
the intersection of all subvarieties of Xpar(Γ) containing C. The variety X is
a complex irreducible variety satisfying (XR)

C
= X. Let m be the (complex)

dimension of X, equal to the real dimension of C. Let A ⊂ C a finite set
equivalent to C. Let X ′comp be the compactification of X ′ with reference
to the family {Ic|X}

c∈A
. The closure of C in X ′comp may be identified

with the compactification of Teichmüller space τk
g

comp
= τk

g ∪ BA(τk
g ). The

boundary BA(τk
g ) is homeomorphic to a sphere Sm−1, and is contained in

BA(X ′). This latter set is, by theorem 3.10, a finite union of (m − 1)-
dimensional subspheres, hence it may be seen as a (m − 1)-dimensional
polyhedral complex.
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Lemma 5.9. Let M be a compact topological n-manifold without boundary,
let P be a n-dimensional polyhedral complex, and let i : M →֒P be a injective
continuous map. Then for every n-dimensional face F ⊂ P the intersection

i(M) ∩
◦
F is empty or the whole

◦
F . Hence the image i(M) is the union of

all faces of P whose interior intersects i(M).
Proof : The set D = {x ∈M | i(x) is in the interior of an n-dimensional

face of P} is a dense open subset of M , as it is impossible for a neighbor-
hood of a point to be sent injectively in the (n − 1)-skeleton. We fix an
n-dimensional face F ⊂ P , and let F ′ = i−1(F ) ∩D. We want to say that

i(F ′) is the whole
◦
F or it is empty. It is enough to say that it is open and

closed. It is open as the map i|F ′ : F ′→
◦
F is an injective map from a n-

manifold to a space homeomorphic to Rn, so, by the invariance of domain,
it is an open map. To show that it is closed we take a point x in the clo-
sure. There exists some y ∈ M : i(y) = x as M is compact, so the image
is closed. The point y is necessarily in D (by definition of D), so y ∈ F ′.
Hence x ∈ i(F ′). 2

Proposition 5.10. The subset BA(τk
g ) is a polyhedral subcomplex of

BA(X ′).
Proof : It is enough to apply previous lemma to the canonical immersion

i : BA(τk
g )→֒BA(X ′). 2

So if we fix a finite set A ⊂ C equivalent to C we have that BA(τk
g ) is a

polyhedral complex.

Proposition 5.11. Let A,B ⊂ C finite subsets equivalent to C. Then
BA(τk

g ) and BB(τk
g ) are PL-homeomorphic polyhedral complexes.

Proof : We have that A∪B is finite and equivalent to C. The two maps
πA∪B,A and πA∪B,B are restriction of linear maps, so they are PL-maps.
Hence the maps they induce on the spherical quotient: πA∪B,A and πA∪B,B

are PL-homeomorphisms, so (πA∪B,A)−1 ◦ πA∪B,B : BA(τk
g )→BB(τk

g ) is a
PL-homeomorphism. 2

This way we have constructed a PL-structure on the boundary indepen-
dently from the chosen finite set A ⊂ C. Now we want to show that this
PL-structure is PL-homeomorphic to the one defined by Thurston using
train tracks. See [Pap] for definitions and details.

An admissible train track on S, is a graph embedded in S satisfying
certain conditions. A measure on a train track is a function from the set
of the edge in R>0, satisfying, again, certain conditions. There exists an
enlargement operation associating to every measured admissible train track
a measured foliation f on S, and so a point of CB(τk

g ).
If τ is a fixed train track with n edges, every measure on τ may be iden-

tified with a point of R>0n
, and the subset of all these point is a polyhedral

conic subset, that will be denoted by Cτ . The enlargement operation defines
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a map φτ : Cτ→CB(τk
g ). If every connected component of S \τ is a triangle,

the image φτ (Cτ ) = Vτ is an open subset of CB(τk
g ). Moreover the map φτ

is an homeomorphism with its image.
The union of the open sets Vτ is the whole CB(τk

g ). So every Vτ is
identified with Cτ in such a way that the changes of charts are piecewise
linear. This way we have described a PL-atlas for CB(τk

g ), the PL-structure
defined by Thurston.

We want to show that the identity map is a PL map if we endow the
domain with the Thurston’s PL-structure, and the codomain with the struc-
ture defined above. This implies that the two structure are equal.

To show this we need to prove that the maps φτ are PL if we endow
the codomain with the structure defined above. We choose a finite family
A ⊂ C equivalent to class, so that the cone CBA(τk

g ) is a subset of RA. The

map φτ : Cτ→CBA(τk
g ) ⊂ RA is made up of coordinates, for each element

c ∈ A the corresponding coordinate of φτ is the function that associate to
a measure µ on τ the number (I(f, c)), where f is the foliation constructed
by the enlargement of the measured train track (τ, µ).

For all c ∈ A it is easy to see that the corresponding coordinate is PL.
We choose a curve γ ∈ c such that γ does not contain any vertex of τ and
such that it intersects any edge transversely. Now we define the function
pγ : Cτ→R as the sum of the measures of all the edges intersected by γ,
counted with multiplicity. This function is the restriction of a linear function
with positive integer coefficients. The coordinate of φτ corresponding to c is
simply the minimum of all the function pγ , and locally the minimum may be
taken over a finite numbers of linear functions, so the result is a PL function.

5.3 Compactification using an hypersurface

It may be useful to find a set A ⊂ C equivalent to C of minimal cardinality.
For τk

g it may be found such a set with 6g − 5 + 2b elements, just one more
than the dimension. What we need is a set of curves that fill up and such that
the map (I(·, c))c∈A from the set of Whithead class of measured foliation in
RA is injective. If k = 0 such a set is described in [Ha2], else it is described
in [Ha1]. In the following A will denote a set with these properties.

Let X be, as in subsection 5.2, the intersection of all subvarieties of
Xpar(Γ) containing a fixed connected component C of DXpar

R
(Γ). The va-

riety X is a real variety of dimension 6g − 6 + 2b. Let FA be the map:

FA : X ∋ x→(Ic(x))c∈A ∈ RA ≃ R6g−5+2b

We denote by W the closure of the image of FA. This is an irreducible
variety, and its dimension is lesser or equal than the dimension of X (6g −
6 + 2b). The boundary of C with reference to the family A is, by definition
(see subsection 2.5) contained in the boundary of W with reference to the
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family of coordinates (X1 . . . X6g−5+2b). So the boundary of C has dimension
greater or equal to 6g − 7 + 2b, and this implies that the dimension of W is
exactly 6g− 6+2b. So W is an hypersurface in R6g−5+2b, and the cone over
its boundary is contained in a tropical hypersurface.

This way we identify the cone over the boundary of τk
g with a subpoly-

hedron of a tropical hypersurface in R6g−5+2b.
The map FA is proper on C. If k > 0 and A is the set described in [Ha1]

this map is also injective. This may be shown using the fact that the map

τk
g ∋ x→(ℓx(c))c∈A ∈ RA

is injective (see [Ha1]), and that FA is the composition of this map with
cosh.

So we have a homeomorphism from τk
g to a closed subset of W .

Unluckily we currently don’t know the equation for W , nor for the as-
sociated real tropical hypersurface. This piece of information could be very
useful. For example, if we knew that the equation has few monomials, we
could say that the tropical hypersurface. As this surface is a cone, this would
imply that it is a disk, hence that it is a cone over a sphere. This would
have two nice consequences: we could say that the cone over the boundary
is the whole tropical hypersurface, not only a subpolyhedron, and we could
have an alternative proof that the boundary for the Teichmüller space is a
sphere.

6 Appendix: Valuations and sequences

The main target of this section is to prove that CB(V ′) = T (I), as stated
in subsection 3.2, in the case of a infinite family F . We make this using
a modification of Morgan and Shalen theory of valuating sequences, that
is also a nice way for interpreting the description of boundary points as
valuations.

6.1 Ordered groups

In this subsection we fix some notations about ordered groups. By an or-
dered group we mean an Abelian group (Λ,+) equipped with a total order
relation < satisfying the property: ∀a, b : a < b and c ≤ d⇒ a+c < b+d. We
define |λ| = max{λ,−λ}. By a closed interval with extremes λ1, λ2 ∈ Λ
we mean the set [λ1, λ2] = {λ ∈ Λ | λ1 ≤ λ ≤ λ2}. A convex subset is a set
I ⊂ Λ such that ∀λ1, λ2 ∈ I : [λ1, λ2] ⊂ I.

Every subgroup of an ordered group is viewed as an ordered group with
the restricted order relation. If Λ′ ⊂ Λ is a convex subgroup, the order
relation of Λ induces an order relation on the quotient Λ/Λ′.
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The set of convex subgroups of Λ is totally ordered by inclusion. If this
set is finite the group is said to be of finite rank, and the rank of the group
is defined to be the cardinality of the set of its non trivial convex subgroups.

The basic example of a ordered group of rank n is Rn with the lexico-
graphic order. Every subgroup of rank n is isomorphic to some subgroup of
Rn. If the rank is 1 the immersion of the group in R is uniquely determined
up to scalar multiplication.

Let Λ be a ordered group of finite rank r. We denote its convex subgroups
by {0} = Λ0 ( · · · ( Λr = Λ. The height of an element λ ∈ Λ is defined
as the j ∈ {1 . . . r} such that λ ∈ Λj \ Λj−1. The group Λj/Λj−1 has rank
1, hence there exists an immersion ij : Λj/Λj−1 →֒R, unique up to a scalar
factor.

We endow the set [−∞,+∞] = R∪{±∞} with extended operations such
that 1

±∞ = 0, a · (±∞) = (± sign(a))∞.

We introduce a division operation Λ×(Λ\{0}) ∋ (λ, λ′)→ λ
λ′ ∈ R∪{±∞},

in the following way: if λ and λ′ have the same height j we define λ
λ′ =

ij(λ)
ij(λ′) ,

if λ has an height less than the height of λ′ we define λ
λ′ = 0, if it is greater

we define λ
λ′ = sign(λ) sign(λ′)∞.

With this definition the following properties hold: ∀λ, λ′ : ( λ
λ′ ) 6= 0 ⇒

( λ
λ′ )

−1
= λ′

λ
and ∀r, s ∈ Z with sign(s) = − sign(λ′), we have λ

λ′ <
r
s
⇔

rλ′ < sλ.

6.2 Ring valuations

In this section we give a concise introduction to ring valuation, and then we
show how one can use them to make a correspondence from a subset of the
set of finite rank valuation of a field to the set of rank one valuation of a
subring.

Definition 6.1. Let k be a field, A ⊃ k a k-algebra and (Λ,+, <) an ordered
group. By a valuation of A over k we mean a map v : A→Λ ∪ {+∞} such
that:

1. v(xy) = v(x) + v(y).

2. v(x+ y) ≥ min(v(x), v(y)).

3. v(0) = ∞, v(k∗) = 0.

A valuation is said to be trivial if v(A) ⊂ {0,+∞}.

The set v−1(+∞) is a prime ideal of A. Hence when A = F is a field we
have v(F∗) ⊂ Λ.

The image v(A) \ {+∞} is a subgroup of Λ, and will be called Λv. If Λv

is of finite rank v is said to be of finite rank and the rank of v is defined
as the rank of Λv.
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Definition 6.2. Two valuations v : A→Λ∪{+∞} and w : A→Λ′∪{+∞} are
said to be equivalent if v−1(+∞) = w−1(+∞) and there exists a ordered
group isomorphism ϕ : Λv →֒Λw such that ∀x ∈ A \ v−1(+∞) : ϕ(v(x)) =
v′(x).

When we are interested to valuation up to equivalence, we may suppose
that they are surjective (Λv = Λ). Else if we want to compare valuations
whose values belongs to the same group (as, for example, real valuations,
Λ = R) we may not suppose surjectivity.

Definition 6.3. If v is a valuation of A, the set Ov = {x ∈ A | v(x) ≥ 0}
is a subring, and will be called valuation ring of v.

A subring O ⊂ F of a field F is said to be a valuation ring for F if
∀x ∈ F : x ∈ O or x−1 ∈ O. If O is a valuation ring for F there exists
a unique equivalence class of valuations v such that O = Ov (see [ZS2]).
Hence the equivalence class of a valuation of a field is determined by its
valuation ring.

If v is a valuation of a field F, the valuation ring Ov is a local ring whose
maximal ideal will be denoted by mv = {x | v(x) > 0}.

Theorem 6.4. (Existence of valuations) Let A be a ring, k and F be
fields satisfying k ⊂ A ⊂ F. Let I ( A be an ideal. There exists a valuation
v of F such that A ⊂ Ov and I = mv ∩A.

Proof : See [ZS2, VI§4, thm. 5]. 2

We will need only valuations of finite rank, thank to the following propo-
sition.

Proposition 6.5. If v is a valuation of F over k, then rank v is less or equal
than the transcendence degree of F over k. 2

6.3 Reducing the rank

Let v be a valuation of F of finite rank and let λ ∈ Λv an elements of height
s, i.e. λ ∈ Λv

s \ Λv
s−1. If we consider the elements of Λv

s−1 to be “too small”
if compared with λ, we may take the quotient valuation:

v : F
v
→ Λv ∪ {+∞}→Λv/Λv

s−1 ∪ {+∞} = Λv ∪ {+∞}

This way all elements of height less than s become 0, and the image of
λ in the quotient has height 1.

We may also consider elements in Λv \ Λv
s to be “too big” if compared

with λ. We define a valuation of the subring Ov,s = {g ∈ F | ∃m ∈ Z :
v(g) ≤ mλ}:

v̂ : Ov,s ∋ g→

[{

v(g) if v(g) ∈ Λv
s

+∞ else

]

∈ Λv
s ∪ {+∞} = Λv̂ ∪ {+∞}
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With this valuation the elements with height greater than s become +∞.
However the valuation v̂ may not be defined on the whole F, but only on the
subring Ov,s. To evaluate the elements of F \Ov,s we should have assigned
them a −∞ valuation, but this is forbidden.

With this construction we may reduce the rank of a valuation, but we
loose some structure on the valued set: not a field, but a ring. However if we
know v̂ we can recover v, as the valuation ring Ov̂ ⊂ Ov,s is a valuation ring
for F, and the equivalence class of valuations corresponding to this valuation
ring is the class of v.

Let s be a fixed height, we may apply both constructions. In this way we
get a rank 1 valuation v̂ of the subring Ov,s. An equivalent way for defining
v̂ is to take an element λ ∈ Λv

s \ Λv
s−1 and then put:

v̂ : F ∋ g→
v(g)

λ
∈ R ∪ {±∞}

Where
v(g)

λ
is a division between elements of Λ. In this way Ov,s =

F \ v̂
−1

(−∞).
Let k ⊂ F be fields. Let A ⊃ k be a k-algebra such that F = Q(A) (the

field of fractions of A) and let F be a set of generators of A as a k-algebra.
Let v be a finite rank valuation of F over k and let s be the maximum

height of the elements in F . Hence A ⊂ Ov,s, and the valuation v̂ may be
restricted to a rank 1 valuation of A, hence it is equivalent to a real valued
valuation such that {0} 6= v̂(F) ⊂ R.

Proposition 6.6. Let k,F, A,F be as above and let v : A→R ∪ {+∞} be a
valuation such that {0} 6= v(F) ⊂ R. There exists a valuation w of F over
k such that v = ŵ|A.

Proof : Let P = v−1(+∞), a prime ideal of A. The valuation v may be

extended to the localization ring AP =

{

p

q
| p ∈ A, q ∈ A \ P

}

. We define

the extension ω : AP→R ∪ {∞} by the formula ω
(

p
q

)

= v(p) − v(q). It is

easy to see that it is well defined and that ω|A = v. The ideal PAP = P e =
{

p
q
| p ∈ P, q ∈ A \ P

}

= {g ∈ AP | ω(g) = +∞} is the unique maximal

ideal of AP , hence every element g with ω(g) ∈ R has an inverse in AP . It

follows that ∀f, g ∈ AP \ PAP : ω(f) = ω(g) ⇔ ω
(

f
g

)

= 0.

We want to define a valuation w of K taking values in a group Λ ⊃
Λv = Λω such that w|AP

\ ω−1(+∞) = ω. We denote by O the subring
{f ∈ AP | ω(f) ≥ 0}, and by M the ideal {f ∈ O | ω(f) > 0}. By the
theorem of Existence of valuations (thm. 6.4) there exists a valuation ring O
of F with maximal ideal m such that O ⊂ O and M = O∩m. We denote by
w a valuation of F with valuation ring O. We want to show that it coincide

with ω over AP . ∀f, g ∈ AP : w(f) = w(g) ⇔ w
(

f
g

)

= 0 ⇔ f
g
∈ O \m ⇔
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f
g
∈ O \M ⇔ ω

(

f
g

)

= 0 ⇔ ω(f) = ω(g). Hence we may construct an

immersion Λv →֒Λw such that w|AP
= ω. 2

However the valuation w constructed in the previous section isn’t unique.

6.4 Valuating sequences

Let V be a complex irreducible affine variety defined over the countable field
k ⊂ C, embedded with the classical topology. We need a way for describing
valuation of F = k(V ) over k.

In this section we recall some definition and results from [MS1] about k-
valuating sequences. Then we introduce the concept of valuation supported
out of V ′. In the following subsections these object will be associated with
the ideal points of the compactification V ′comp.

Definition 6.7. A k-valuating sequence is a sequence (xn)n∈N
⊂ V such

that every point xn is k-generic and such that:

∀f ∈ F : ∃ lim
n−→∞

f(xn) ∈ C ∪ {∞} = CP1

(These limits are meant in the classic topology over CP1). The condition
that the points xn are k-generic guarantees that f is well defined on them
and that f(x) ∈ K \ k.

If (xn) is a valuating sequence we may define a place:

P(xn) : F ∋ f→ lim
n−→∞

f(xn) ∈ CP1

This function is finite over O = {f ∈ F | P(xn)(f) 6= ∞}. The complex
function P(xn) : O→C is a place of F over k. The ring O is a valuation
ring, and the valuation that has this ring of valuation (well defined up to
equivalence) will be denoted by v(xn). As the transcendence degree of F over
k is finite, v(xn) has finite rank.

Proposition 6.8. If v is a valuation of F over k, there exists a k-valuating
sequence (xn) such that v is equivalent to v(xn).

Proof : [MS1, corol. 1.2.3] 2

Proposition 6.9. Let (xn) ⊂ V be a k-valuating sequence, and let v = v(xn).
Let f, g ∈ F such that v(g) 6= 0 (i.e. P(xn)g = 0 or ∞). Then we may

evaluate the ratio
v(f)

v(g)
(as division between elements of Λv):

v(f)

v(g)
= lim

n−→∞

log |f(xn)|

log |g(xn)|

Proof : If v(f) = 0 the sequence log |f(xn)| is bounded. The sequence
log |g(xn)| is not, hence both members are 0.
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Suppose from now on that v(f) 6= 0.

For h ∈ F we have that v

(

1

h

)

= −v(h) and log

∣

∣

∣

∣

1

h(xi)

∣

∣

∣

∣

= − log |h(xi)|,

hence we may suppose in the following that v(f), v(g) < 0.
With this hypothesis we may conclude by proposition [MS1, prop. 1.2.1].

We recall the proof.
We know that lim

n−→∞
log(g(xi)) = ∞ and lim

n−→∞
log(f(xi)) = ∞ ⇒ ∃M :

∀i > M : log |g(xn)| > 0 and log |f(xn)| > 0, hence
log |f(xn)|

log |g(xn)|
∈ (0,∞).

It is enough to show only one of the two inequalities:

lim
n−→∞

log |f(xn)|

log |g(xn)|
≤
v(f)

v(g)

If the second member is 0 we have done, else we apply the same inequality
exchanging the roles of f and g, and we get the opposite inequality.

To prove the inequality we take r, s ∈ N such that
v(f)

v(g)
≤

r

s
. This

implies that sv(f) > rv(g) and so that v

(

gr

f s

)

= rv(g) − sv(f) < 0, hence

we have log

∣

∣

∣

∣

g(xi)
r

f(xi)s

∣

∣

∣

∣

−→∞, hence ∃M1 : ∀i > M1 : log

∣

∣

∣

∣

g(xi)
r

f(xi)s

∣

∣

∣

∣

≥ 0 ⇒

r log |g(xi)| ≥ s log(|f(xi)|) ⇒
log |f(xn)|

log |g(xn)|
≤
r

s
. 2

Definition 6.10. A valuation v : F→Λ is said to be supported at infinity
if k[V ] 6⊂ Ov .

Proposition 6.11. Let v be a valuation of F over k. v is supported at
infinity if and only if there exists a k-valuating sequence (xn) ⊂ V such that
v is equivalent to v(xn), and (xn) is not contained in any compact subset of
V .

Proof : [MS1, prop. 1.2.4]. 2

It is easy to classify all valuations that are not supported at infinity. If v
is not supported at infinity, it is equivalent to a valuation v(xn) where (xn)
is a k-valuating sequence contained in a compact subset K ⊂ V . Hence we
may extract a subsequence (xnk

) that converges to a point x ∈ K. This
means that if f ∈ k[V ] there exists limn−→∞ f(xn) = f(x). This is true for
every polynomial, hence xn−→x.

We denote by S the set of all valuations of F over k, up to equivalence,
by Sx, x ∈ V the set of all equivalence classes of valuations of the form x(xn)

with xn−→x, by S∞ the set of all valuation supported at infinity. With
these notations we have:

S = S∞ ∪

(

⋃

x∈V

Sx

)
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Now we fix a generating family for V , denoted by F = (fj)j∈J
⊂ k[V ].

We use the notations V ′ and k[V ′] = k[(fj), (f
−1
j )] ⊂ k(V ), as usual.

Definition 6.12. A valuation v : F→Λ is said to be supported out of V ′

if k[V ′] 6⊂ Ov, or equivalently if ∃j : v(fj) 6= 0.

Proposition 6.13. Let v be a valuation of F over k, v = v(xn), (xn) ⊂ V .
Then v is supported out of V ′ ⇔ {xn} is not infinitely often contained in
any compact subset of V ′.

Proof : By definition v is supported out of V ′ ⇔ k[V ′] 6⊂ Ov ⇔ ∃j ∈ J
such that v(fj) < 0 ⇔ ∃j : lim fj(xn) = ∞ o lim fj(xn) = 0.

⇒: If ∃j : lim fj(xn) = ∞ then {xn} is not infinitely often contained in
a compact subset of V , in particular it is not infinitely often contained in a
compact subset of V ′. Else if ∃j : lim fj(xn) = 0, the sequence (xn) may not
be infinitely often contained in a compact subset of V ′, otherwise it would
have a subsequence converging to a point x ∈ V ′, but then fj(x) 6= 0.

⇐: If (xn) is not infinitely often contained in a compact subset of V ′

we have two cases: it is infinitely often contained in a compact subset of V
(intersecting V \V ′) or it is not. In the former case there exists a subsequence
(xnk

) converging to a point x ∈ V \ V ′, hence there exists j ∈ J such
that 0 = fj(x) = lim fj(xnk

) = lim fj(xn). In the latter case ∃p ∈ k[V ] :
p(xn)−→∞ ⇒ ∃j : fj(xn)−→∞, because F generates k[V ]. 2

So if we denote by S′ the set of equivalence classes of valuation with
support out of V ′, we can write:

S′ = S∞ ∪





⋃

x∈V \V ′

Sx





6.5 Quasi-valuating sequences

Quasi-valuating sequences are our counterpart to Morgan and Shalen pre-
valuating sequences.

Definition 6.14. By k-quasi-valuating sequence we mean a sequence
(xn)n∈N

⊂ V ′ satisfying:

1. ∀f ∈ k[V ′] : ∃ lim
n−→∞

f(xn) ∈ C ∪ {∞} = CP1.

2. ∀f, g ∈ k[V ′] : lim
n−→∞

log |g(xn)| = ±∞ ⇒ ∃ lim
n−→∞

log |f(xn)|

log |g(xn)|
∈

[−∞,∞].

Note that in the previous section we used functions in k[V ′], so they are
well defined on every point of V ′.
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Let (xn) be a sequence not contained in any compact subset of V ′.
As k[V ′] is countable by a diagonal argument we may extract a k-quasi-
valuating subsequence not contained in any compact subset of V ′.

Proposition 6.15. Let (xn) be a k-quasi-valuating sequence. There exists
a k-valuating sequence (x′n) such that:

1. (x′n) is contained in some compact subset of V ′ if and only if (xn) is.

2. ∀f ∈ k[V ′] : lim
n−→∞

f(x′n) = lim
n−→∞

f(xn).

3. ∀f, g ∈ k[V ′] : lim
n−→∞

log |g(xn)| = ±∞ ⇒ lim
n−→∞

log |f(x′n)|

log |g(x′n)|
=

lim
n−→∞

log |f(xn)|

log |g(xn)|

Proof : As generic points are dense, and k[V ′] is countable, we may find a
sequence of generic points verifying the conditions. Then, as F is countable,
we may extract a k-valuating subsequence. 2

Definition 6.16. Let v be a valuation of F over k supported out of V ′,
and let (xn) be a k-quasi-valuating sequence not contained in any compact
subset of V ′. The valuation v is said to be compatible with (xn) if:

1. ∀f ∈ k[V ′] : lim
n−→∞

f(xn) = ∞ ⇔ v(f) < 0.

2. ∀f ∈ k[V ′] : lim
n−→∞

f(xn) = 0 ⇔ v(f) > 0.

3. ∀f, g ∈ k[V ′] : lim
n−→∞

log |g(xn)| = ±∞ ⇒ lim
n−→∞

log |f(xn)|

log |g(xn)|
=
v(f)

v(g)

Proposition 6.17. For every k-quasi-valuating sequence (xn) not contained
in any compact subset of V ′ there exists a compatible valuation v supported
out of V ′.

Proof : Let (x′n) be a k-valuating satisfying the properties of the propo-
sition 6.15. Let v = v(x′

n). By proposition 6.13 v is supported out of V ′ and
by proposition 6.9 is compatible with (xn). 2

6.6 Ideal points and valuations

We make use of the notations S, S∞, Sx, S
′ defined in subsection 6.4.

If v ∈ S, we denote by Λv its image group.The group Λv has finite rank
r, and we denote by Λv

1 . . .Λ
v
r its convex non trivial subgroups.

We restrict our attention on values taken by elements of F .
We denote by s the smaller integer such that ∀f ∈ F : v(f) ∈ Λv

s .
The valuation v, defined in subsection 6.3 as the composition of v with the
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projection Λv→Λv/Λv
s−1 sends to 0 all elements whose valuation has height

less than s.
We denote by S0 the set of all these valuations:
S0 = {v ∈ S | v is supported out of V ′ and ∀f ∈ F : v(f) ∈ Λv

1}
Let v ∈ S0. We choose an immersion µ : Λv

1 →֒R and we define:

z = (µ(−v(fj))j∈J
∈ RJ

As v is supported out of V ′ we know that z 6= 0, hence, as µ is unique up
to positive constants, it is well defined the elements π(z) ∈ S, independently
on the choose of µ.

We may write π(z) = U(v), defining a map U : S0→S. We want to
study the image of this map, i.e. the set U(S0) ⊂ S.

Now we want to show that the set U(S0) ⊂ S coincides with the set of
ideal points B(V ′). We need the following lemma.

Lemma 6.18. Let (xn) ⊂ V ′ be a k-valuating sequence not contained in
any compact subset of V ′, and let v be a compatible valuation of F over k
supported out of V ′. Then

lim
n−→∞

θ(xn) = U(v)

Proof : We identify Λv
1 with a subgroup of R, so that U(v) =

π((−v(fj))j∈J
) ∈ S.

By definition ∃j : v(fj) ∈ Λv
1 \ 0. We choose f ∈ {fj , f

−1
j } such that

v(f) < 0. The existence of such an f implies that v is supported out
of V ′. We have v(f) < 0 ⇒ lim f(xn) = ∞ by compatibility. Hence
∃M1 : ∀n > M1 : f(xn) 6= 1. When n > M1 we define:

yn =
1

log |f(xn)|
Log(xn) =

(

log |fj(xn)|

log |f(xn)|

)

j∈J

∈ RJ

y =
1

−v(f)
U(v) =

(

v(fj)

v(f)

)

j∈J

∈ RJ

As v is supported out of V ′, we have that ∃M2 > M1 : ∀n > M2 : yn 6= 0.
We need to show that θ(xn)−→U(v). As ‖θ(xn)‖−→∞, by proposition

2.2 it is enough to show that π(Log(xn))−→U(v). As π(Log(xn)) = π(yn)
and U(v) = π(y), it is enough to show that yn−→y. This follows by

∀j ∈ J : lim
n−→∞

log |fj(xi)|

log |f(xi)|
=
v(fj)

v(f)
=
v(fj)

v(f)

The former inequality is assured by compatibility of v with (xi), and the
latter by definition of v. 2
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Theorem 6.19. If V is an irreducible variety, B(V ′) = U(S0).
Proof : ⊂: Let b ∈ B(V ′). There exists a sequence (xi) ⊂ V ′ not

contained in any compact subset of V ′, such that θ(xi)−→b. We may extract
a k-quasivaluating sequence. By proposition 6.17 there exists a compatible
valuation v. By previous lemma b = U(v).

⊃: Let v ∈ S0. By proposition 6.8 there exists a k-valuating sequence
(xi) such that v is equivalent to v(xi), in particular v is compatible with
(xi). By previous lemma U(v) = lim θ(xi). By proposition 6.13 (xi) is not
contained in any compact subset of V ′, hence U(v) ∈ B(V ′). 2

6.7 Restriction to real valued valuations

The set U(S0) = B(V ′) may be characterized in an other way. We are
interested only in the values of the elements of F , that lie in Λv

1, so we may
ignore the elements with higher values. As in subsection 6.3 we may restrict
our attention to the valuation v̂|k[V ′] : k[V ′]→R ∪ {∞}, well defined up to a
positive scalar factor.

We denote by SR the set of valuations v : k[V ′]→R ∪ {+∞}, and we
define S′

R
= {v ∈ SR | ∃j ∈ J : v(fj) 6= 0}. By proposition 6.6 every

valuation in S′
R

may be obtained reducing the rank of a valuation in S0, and
reciprocally if we reduce the rank of a valuation in S0 we get a valuation in
S′

R
well defined up to scalar multiplication.
We introduce the function:

z : S′
R ∋ v→(−v(fj))j∈J

∈ RJ

By definition 0 6∈ z(S′
R
), so we may apply the projection on S.

UR : S′
R ∋ v→π(z(v)) =∈ S

UR(v) = [−v(fj)]j∈J

With the property: UR(S′
R
) = U(S0).

Now the last theorem may be stated as:

Corollary 6.20. If V is an irreducible variety, UR(S′
R
) = B(V ′). 2

This result may be generalized to reducible varieties. So if V is a
(possibly reducible) variety, we denote by Vi its irreducible components.
Now we have that V ′comp =

⋃

V ′
i
comp, B(V ′) =

⋃

B(V ′
i ). We introduce

the notations S′
R,i = {v : k[V ′

i ]→R ∪ {+∞} | ∃j ∈ J : v(fj) 6= 0} and
S′

R
= {v : k[V ′]→R ∪ {+∞} | ∀j ∈ J : v(fj) 6= +∞ and ∃j ∈ J : v(fj) 6= 0},

as above. We denote by UR,i : S′
R,i→S and by UR : S′

R
→S the maps defined

above.
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Proposition 6.21. If V is a (possibly reducible) variety, B(V ′) = UR(S′
R
).

Proof : ⊂: Let x ∈ B(V ′). There exists i such that x ∈ B(V ′
i ) =

UR,i(S
′
R,i). Hence there exists v : k[V ′

i ]→R ∪ {+∞} such that x = UR,i(v).
The map k[V ]→k[Vi] may be extended to a surjective map k[V ′]→k[V ′

i ], so
k[V ′

i ] is the quotient of k[V ′] by the ideal Pi extended (which will be denoted
by P ′

i ). Hence v may be lifted to a valuation w : k[V ′]→R{+∞}, such that
UR(w) = UR,i(v) = x.

⊃: Let x ∈ UR(S′
R
). There exists a valuation w ∈ S′

R
such that UR(w) =

x. The prime ideal P ′ = w−1(+∞) ⊂ k[V ′] is the extension of a prime ideal
P ⊂ k[V ] that has empty intersection with the multiplicative set generated
by F . There exists an index i such that Pi is contained in P , so by lemma
1.5 there exists a valuation v of k[V ′

i ] = k[V ′]/P ′
i such that x = UR,i(v) ∈

B(V ′
i ) = B(V ′) 2

The image z(S′
R
) ⊂ RJ of the function z, united with the point 0 ∈ RJ

is the set CB(V ′), the cone over B(V )′.
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[Ha2] U.Hamenstädt, Parametrizations of Teichmüller spaces and its
Thurston boundary, Geometric Analysis and Nonlinear PDE, 81–88,
Springer, Berlin, 2003.

[FLP] A.Fathi, F.Laudenbach, V.Poénaru, Travaux de Thurston sur les sur-
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